Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Journal of Southern Medical University ; (12): 109-115, 2016.
Article in Chinese | WPRIM | ID: wpr-232501

ABSTRACT

<p><b>OBJECTIVE</b>To prepare insulin-loaded polymeric nanoparticles based on polyethyleneimine-polycaprolactone- polyethylene glycol-polycaprolactone-polyethyleneimine pentablock copolymers and evaluate its in vitro release of insulin.</p><p><b>METHODS</b>Polycaprolactone-polyethylene glycol-polycaprolactone (PCL-PEG-PCL) triblock copolymer was synthesized by ring-opening polymerization method, and the pentablock copolymer was prepared by Michael addition reaction. The copolymers obtained were characterized by Fourier-transform infrared (FT-IR) spectroscopy and (1)H-NMR and their critical aggregation concentration (CAC) was measured by fluorescence technique with pyrene as the probe. Insulin-loaded polymeric nanoparticles based on the pentablock copolymers were prepared by solvent evaporation method that exploited the cationic nature of PEI-PCL-PEG-PCL-PEI to allow the formation of ionic complexes with anionic biomolecules such as insulin. The prepared nanoparticles were further characterized by Malvern laser particle sizer and transmittion electron microscopy (TEM). The drug loading, encapsulation efficiency and in vitro release profile of the nanoparticles were analyzed using Bradford method.</p><p><b>RESULTS</b>Using copolymer PEI10K-PCL4K-PEG2K-PCL4K-PEI10K as the drug carrier, the spherical nanoparticles prepared with an optimal insulin-coplymer mass ratio of 40% allowed the maximum insulin loading of (18.63∓0.07)% and had an average particle size of 175.30∓19.51 nm. The prepared nanoparticles was capable of sustained release of insulin for as long as 48 h in vitro, and the burst release could be minimized by incorporation of PEI in the triblock copolymer.</p><p><b>CONCLUSION</b>The insulin-loaded polymeric nanoparticles based on the pentablock copolymers allow sustained release of insulin in vitro, and PEI can enhance sustained drug release and reduce burst drug release.</p>


Subject(s)
Delayed-Action Preparations , Drug Carriers , Chemistry , Drug Liberation , Insulin , Pharmacokinetics , Nanoparticles , Chemistry , Particle Size , Polyesters , Chemistry , Polyethylene Glycols , Chemistry , Polymers , Chemistry , Spectroscopy, Fourier Transform Infrared
2.
Chinese Journal of Tissue Engineering Research ; (53): 4573-4577, 2014.
Article in Chinese | WPRIM | ID: wpr-452995

ABSTRACT

BACKGROUND:Epidermal stem cells as special stem cells of the skin not only plays an important role in maintaining the metabolism of skin, but also is closely related to wound repair, which are the basis for the occurrence and repair of skin and its appendages. Now, epidermal stem cells have been paid great attention on the research of gene therapy and celltherapy with its specific biological advantages. OBJECTIVE:To summarize the research status on features and clinical application of epidermal stem cells. METHODS:A computer-based online retrieval of CNKI, PubMed database and Google scholar was performed for searching papers about clinical application of epidermal stem cells using the keywords of“epidermal stem cells, stem cells division, stem cells culture, clinical application”in Chinese and English. Older theoretical perspectives and repetitive research were excluded. Finally, only 41 articles were included in result analysis. RESULTS AND CONCLUSION:Epidermal stem cells have the great potential of proliferation and multi-directional differentiation, and have important significances for large-area skin defects (burn and trauma), skin tissue engineering, and gene therapy. There are stil many problems that need to be solved, such as how to screen surface markers special for epidermal stem cells and how to induce skin differentiation of epidermal stem cells.

3.
Chinese Journal of Tissue Engineering Research ; (53): 1432-1437, 2009.
Article in Chinese | WPRIM | ID: wpr-406638

ABSTRACT

BACKGROUND: Based on our previous researches in mechanism studies and clinical applications of human hair keratin (HHK), a new concept "in vivol in situ tissue engineering" has been proposed. Under the guidance of this theory, a scaffold of HHK-collagan sponge (inner layer) combined with poly (2-hydroxyethyl methacrylate) (PHEMA) (outer layer as a drug delivery carrier) would be developed to investigate its feasibility to be as a dermal dressing. OBJECTIVE: To develop a scaffold composed of HHK-collagan sponge (inner layer) combined with PHEMA film containing polydatin(PD)(outer layer as a drug delivery carrier) and to evaluate the therapeutic efficacy of the HHK-collagen sponge-PHEMA/PD complex on burn wound healing. DESIGN, TIME AND SETTING: A randomized controlled animal experiment was performed at the Department of Histology and Embryology, Southern Medical University between March and December 2005. MATERIALS: Burn was induced in 15 male Sprague-Dawiey (SD) rats, Rat models of burn were evenly randomized to 3 groups: experimental, positive control, and negative control. METHODS: ①HHK-collagen sponge was prepared through combination of a HHK meshwork (1mm × 1 mm in size for each grid) made up of three components (determined according to biochemical procedures of various degrees, i.e., light, medial, and severe) at a ratio of 4:3:3 with primary collagen sponge extracted from bovine tendons in a mould. Sponge film (used as inner layer dressing) was made by vacuum freeze-drying. ② PHEMA was prepared by polymerization. Than PD was added to prepare PHEMNPD film (used as outer layer dressing).③ Degree Ⅱ burn wound models were established in SD rats by scalding, Superficial necrotic tissue was removed from burn wounds at postnatal 3 days and leave the denatured dermis remained. The wounds were either covered with human HHK-collagen- PHEMNPD complex in the experimental group, or with glutaraldehyde-treated porcine skin in the positive control group, and sterile absorbent gauze was used in the negative control group. MAIN OUTCOME MEASURES: ① Complete epithelization was taken as the standards, and at postoperative 7, 14, and 21 days, wound healing was respectively calculated. ② At postoperative 1, 2, 4, 6, and 8 weeks, the whole wound surface and its peripheral tissue were dissected for observing granulation tissue growing under an optical microscope and detecting the collagen fiber and elastic fiber in the newly formed tissue by immunohistochemical staining. RESULTS: ① Gross observation results revealed that in the experimental group, the volume of the diffusate under the ideal moisture was less compared with the positive control group; the healing time was slightly shorter in both the experimental group and the positive control group than in the negative control group (P= 0.000); At postoperative 7, 14, and 21 days, the healing rate was higher in the experimental and positive control groups than in the negative control group (P=0.000), in addition, the experimental group exhibited higher healing rate than the positive control group at postoperative 14 days ( P < 0.05). ②Optical microscope results showed that at postoperative 2 weeks, a small quantity of collagen fibers were found in the wound granulation tissue in all 3 groups, in particular in the experimental group. Immunohistochemical staining results regarding collagen protein and elastin revealed that at postoperative 2 weeks, both the fine strip-like type Ⅰ collagen fibers and a few silk-like elastic fibers were stained yellowish-brown in the dermal matrix in the experimental group, which were weakly positive in the positive control group, while there was no elastin detectable in the negative control group; at postoperative 8 weeks, burn wounds in all the 3 groups werefully recovered. Remodeling of collagen fibers was more obvious in the experimental and positive control groups than in thenegative control group, while the tendency to scar formation with derangement of epithelial cells and collagen fibers in dermis was more prominent in the negative control group than in the remaining two groups.CONCLUSION: HHK-collagen sponge-PHEMA/PD complex may be a new burn dressing via in vivo construction of tissueengineered epidermis, in which PHEMA may be a feasible drug-delivery carrier.

SELECTION OF CITATIONS
SEARCH DETAIL